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Introduction

The Context

After the �nancial crisis in 2008-2010, the Basel Committee tried to sort
the unsolved issues in the Basel II. One of the main changes concerned the
general market risk requirement, i.e. how we have to measure the
unexpected loss of our portfolio.
During the past decade, Value-at-Risk (commonly known as VaR) has
become one of the most popular risk measurement techniques in �nance.

The Basel III Committee establishes that in risk measurement VaR has to
be replaced by the Expected Shortfall (ES). VaR and ES are used to
determine the capital charge of a bank, that is the amount of money which
the bank must save to cover unexpected losses.
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Introduction

Prices, Returns and Portfolio

Generally, we consider a time horizon t ∈ [0,M] and a portfolio
w = (w1, . . . ,wN) made of N assets, the weights wi stand for how much
money we invest in the asset i . Denoting by St,i the market price of the
asset i at time t the portfolio value at time t is

Vt =
∑
i

wiSt,i

and the portfolio Pro�t-Loss in time [0,M] is

PL = VM − V0 =
∑
i

wi (St,i − S0,i ).

If we denote by
Rt,i = log(St,i/St−1,i )

we can also rewrite the portfolio Pro�t-Loss as follows

PLt = V0

∑
i

θiRt,i , θi =
wiS0,i
V0

.

Finance Group (UniVr) The FRTB: from VaR to ES September 10, 2016 4 / 28



Introduction

Risk Measures

The Value at Risk of order α of the portfolio w , for the time horizon M,
is de�ned as VaRα(PL) where

VaRα(PL) = −qα(PL) PL is a random variable

where qα(PL) is the quantile of order α of the probability function F (x) of
PL.

The Expected Shortfall of order α of the portfolio w , for the time horizon
M, is de�ned as ESα(PL) where

ESα(PL) = E [PL|PL ≤ VaRα] =
1

α

∫ α

0

VaRu(PL)du
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Introduction

Risk Measures

Remark (Square Root Rule)

We point out that the time window refers to daily data, then the VaR is

daily. If we want to compute VaRT for a di�erent time horizon T we use

the approximation VaRT = VaR ·
√
T .

Such approximation holds exactly as equality when the price process of our

Portfolio is driven by a Geometric Brownian Motion such as in the

Black-Scholes dynamic.

dSt = rStdt + σStdWt
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Introduction

The Approaches

VaR and ES computation were performed by using four di�erent
approaches. We now list the di�erent techniques.

Parametric models:

- ∆-Normal approach;
- Exponential Weighted Moving Average (EWMA) risk
metrics,

Non-parametric models:

- Historical Simulation;
- Weighted Historical Simulation.
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Introduction

∆-Normal approach

Within the ∆-Normal Approach we assume that the vector of the returns R
has a multivariate normal distribution, then the vector PL is normally
distributed with mean zero and variance

σ2PL = wT · Σ · w

where Σij = Cov(Ri ,Rj). In this model it is simple to compute the VaR
and the ES of our portfolio

VaR = −σPLqα(Z ) Z ∼ N (0; 1);

ES = −σPL
ϕ(qα)

α
ϕ gaussian density.
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Introduction

EWMA Risk Metrics

The EWMA approach makes use of the same formulas of the ∆-Normal
Approach for the VaR and ES.
It requires to build a weighted Covariance Matrix Σ̃ = (σ̃ij) of the returns
according to the following de�nition

σ̃ij =
1− λ
1− λM

M∑
m=1

λm−1RM−m,iRM−m,j

and replace Σ with Σ̃.

Remark

The EWMA model is similar to GARCH: we can estimate the variance by

using a regressive method

σ2k+1
= λσ2k + (1− λ)R2

k , σ0 �xed

where Rk denotes the Pro�t and Loss of our Portfolio at time k .
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Introduction

Historical Simulation

Historical simulation is a widely used method because

we do not have to specify any probability model;

we do not have to estimate any parameter.

We create the order statistics of PL (from the lowest to the highest)
PLs = (PL(1), . . . ,PL(N)) and we assume that the theoretical distribution
is exactly the empirical one.

Under this Hypothesis it is very simple to compute the VaRα. Denoting by
β = [α · N] (the integer part of α · N), we have

VaRα = PLsβ

Remark

The Historical Simulation Method has a high variance estimator.
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Introduction
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Introduction

Weighted Historical Simulation

We �x some decreasing weights pm, with 1 < m < N, meaning that
pm ∈ (0, 1),

∑
m pm = 1 and pm+1 < pm. For example

pm =
1− λ
1− λM

λm−1, λ ∈ (0, 1)

and we sort the weight pm in accordance with the new position of the
element PLm in PLs, we create a vector psort = (p(1), . . . , p(N)) and �nally
the vector PLw = (p(1) · PL(1), ..., p(N) · PL(N)).
For a �xed α we determine m∗ as follows

m∗∑
i=1

PLwi ≤ α <
m∗+1∑
i=1

PLwi

we set VaRα = PLwm∗ .
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Value at Risk and Expected Shortfall

Our Portfolio

We created a panel including 38 assets, of di�erent nature and came from
di�erent geographical areas.

We downloaded the time series from Yahoo!Finance. The observed window
data starts from 6/9/2014 up to 6/9/2016.

Here the panel composition:

index: NYA, DAX, IPSA, etc...

equities: Apple, Ford, Bank of America, ENI, Telecom, etc...

We construct a portfolio w = (w1, . . . ,w38) by picking wi = 1

38
.
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Value at Risk and Expected Shortfall

Cleaning and Matching of the data

When we compose a diversi�ed portfolio including for instance index,
stocks, bonds, equities, founds and we merge the data in order to made up
the matrix of the prices, we can �nd missing values (NA). For example in
our case we have 624 NA over 20710 values.

We adopt the following criterium

As concern the data from 6/9/2014 to 6/8/2016 we split the
procedure into two cases

- If there are more than 15% of NA we erase the row;
- If there are less then 15% of NA we interpolate the missing data St,i

St,i =
St−1,i + St+1,i

2
(1 + σiN (0, 1))

where σi is the variance of the returns of the asset i .

As concerns the period from 6/8/2016 to 6/9/2016 we always
interpolate the not available data.
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Value at Risk and Expected Shortfall

Portfolio Risk Computation

We create the matrix of the log-return R and we compute VaR and ES by
using the previous 4 methods with α = 0.01

∆-Normal EMWA (λ = 0.99) EMWA (λ = 0.94)

VaR 3.59% 3.74% 2.47%

Historical W-Historical (λ = 0.99) W-Historical (λ = 0.94)

VaR 4.27% 4.52% 3.19%

∆-Normal EMWA (λ = 0.99) EMWA (λ = 0.94)

ES 4.12% 4.29% 2.83%

Historical W-Historical (λ = 0.99) W-Historical (λ = 0.94)

ES 4.81% 5.10% 3.93%
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Value at Risk and Expected Shortfall

Histogram of returns

σG = 1, 5%

σRM = 1, 6%

We performed the
Jarque-Bera test which
said that the PL
distribution is Normal.
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Value at Risk and Expected Shortfall

Historical Vs W-Historical

Figure: Empirical cumulative function
(Historical)

Figure: Empirical cumulative function
(W-Historical)
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Sensitivity Analysis

Perturbation of Weights in Portfolio

This analysis help us to understand which instruments are more/less risky.
We use the following notations

w = (w1,w2, . . . ,wN), and we start by picking uniform weights:

w1 = w2 = ... = wN ,

i - index of instrument,

r - factor change,

w ′ = (w1,...,wi r ,...,wN)
‖(w1,...,wi r ,...,wN)‖ ,
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Sensitivity Analysis
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Perturbation analysis of VaR applied to a portfolio

Index of instrument
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Figure: Perturbation Analysis
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Sensitivity Analysis

Wiener Process Approximation in the VaR Estimation over

Time Horizon h

VaR(α, h)

h - time horizon (h = 1),

Wiener process approximation (Brownian motion),

h 6= 1→ VaR(α, h) ≈VaR(α, 1)
√
h,

Alternative: divide data into h long intervals and estimate VaR(α, h).
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Sensitivity Analysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Wiener approximation
Periodisation

Investigation of the accuracy of the Wiener approximation
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The �gure con�rm the small deviations of empiric data from the square

root rule, then we can conclude that the price process of our Portfolio can
be modeled by a Geometric Brownian Motion.
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Back-Testing Procedures

Backtesting of VaR

In order to use a quantitative method for the risk measurement, the banks
must satisfy some backtesting requirements, that means the model must
show to be predictive when it is used in the day-by-day process.
Consider the event that the loss on a portfolio at time t + 1 exceeds its
reported VaR, VaRt(α)

It+1(α) =

{
1 if Rt+1 ≤ VaRt(α)

0 if Rt+1 > VaRt(α)
e.g. (0, 0, 1, 0, . . . , 0, 1)

For being an accurate risk measure Christo�erson(1998) stated two
properties for the hit sequence It :

Unconditional Coverage Property

Independence Property

This results in the assumption It
i .i .d∼ B(α).
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Back-Testing Procedures

Kupiec Test

The Kupiec test focuses on the unconditional property.
It concerns whether VaR is violated more than α× 100% of the time.
Using a sample of T observations we de�ne

α̂ =
1

T

T∑
t=1

It(α)

Null Hypothesis

H0 : α̂ = α
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Back-Testing Procedures

Figure: Value at Risk Number of Failures: 7, 4, 2, 5.
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Back-Testing Procedures

Figure: Expected Shortfall
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Back-Testing Procedures

Towards the ES Back-Test

The discovery in 2011 that the ES is not elicitable as emphasized by
Gneiting �Marking and Evaluating Point Forecasts� , di�used the erroneous
belief that it could not be Back-Tested.
It is a fact that the absence of a convincing back-test has long been the
last obstacle for ES on its way to Basel. The migration from VaR to ES
was criticized.

Only in 2014 Acerbi and Szakely found three di�erent tests to beck-test the
ES. We refer to their paper �Backtesting Expected Shortfall� for further
details.
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Back-Testing Procedures

Towards the ES Back-Test

Acerbi-Szakely Statistics

Z =
1

N1

·
M∑
t=1

1tRt

ESt
+ 1

where

1t is the indicator function of the event {Rt < VaRt}
N1 =

∑
t 1t

The estimator is itself a Random Variable and its distribution is unknown.
We perform the test by using a Monte Carlo approximation of the
distribution under the H0 hypothesis.
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Back-Testing Procedures

Towards the ES Back-Test

The Back-Testing shows good �gures as the observed is strictly below of
the blue rejection level, but the key point is that we achieved an e�ective
ES backtestability.
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