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The Context

After the financial crisis in 2008-2010, the Basel Committee tried to sort
the unsolved issues in the Basel 1. One of the main changes concerned the
general market risk requirement, i.e. how we have to measure the
unexpected loss of our portfolio.

During the past decade, Value-at-Risk (commonly known as VaR) has
become one of the most popular risk measurement techniques in finance.
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The Context

After the financial crisis in 2008-2010, the Basel Committee tried to sort
the unsolved issues in the Basel 1. One of the main changes concerned the
general market risk requirement, i.e. how we have to measure the
unexpected loss of our portfolio.

During the past decade, Value-at-Risk (commonly known as VaR) has
become one of the most popular risk measurement techniques in finance.

The Basel Il Committee establishes that in risk measurement VaR has to
be replaced by the Expected Shortfall (ES). VaR and ES are used to
determine the capital charge of a bank, that is the amount of money which
the bank must save to cover unexpected losses.
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Introduction

Prices, Returns and Portfolio

Generally, we consider a time horizon t € [0, M] and a portfolio

w = (wi,...,wy) made of N assets, the weights w; stand for how much
money we invest in the asset /. Denoting by S;; the market price of the
asset / at time t the portfolio value at time t is

Vi = Z WiSt,i
and the portfolio Profit-Loss in time [0, M] is
PL=Vy—Vo=> wi(Sti— S

If we denote by
Rei = log(St,i/St-1,i)

we can also rewrite the portfolio Profit-Loss as follows
w;So i
PL; = VOZH,-RL,-, 0; = lVo
1
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Introduction

Risk Measures

The Value at Risk of order o of the portfolio w, for the time horizon M,
is defined as VaR,(PL) where

VaR,(PL) = —q.(PL) PL is a random variable

where g, (PL) is the quantile of order « of the probability function F(x) of
PL.

The Expected Shortfall of order « of the portfolio w, for the time horizon
M, is defined as ES,(PL) where

1 (0%
ES,(PL) = E[PL|PL < VaR,] = a/ VaR,(PL)du
0
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Introduction

Risk Measures

Risk has no
boundary

(unbounded) VaR’s boundary

(bounded)

-

Remark (Square Root Rule)

We point out that the time window refers to daily data, then the VaR is
daily. If we want to compute VaRt for a different time horizon T we use
the approximation VaRt = VaR - /T.

Such approximation holds exactly as equality when the price process of our
Portfolio is driven by a Geometric Brownian Motion such as in the
Black-Scholes dynamic.
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The Approaches

VaR and ES computation were performed by using four different
approaches. We now list the different techniques.

@ Parametric models:

- A-Normal approach;
- Exponential Weighted Moving Average (EWMA) risk
metrics,

@ Non-parametric models:

- Historical Simulation;
- Weighted Historical Simulation.
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A-Normal approach

Within the A-Normal Approach we assume that the vector of the returns R
has a multivariate normal distribution, then the vector PL is normally
distributed with mean zero and variance

U,%L:WT~Z-W

where ¥;; = Cov(R;, R;). In this model it is simple to compute the VaR
and the ES of our portfolio

VaR = —op1qa(Z) Z ~ N(0;1);
£s _ _UPLsO(qa)

© gaussian density.
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EWMA Risk Metrics

The EWMA approach makes use of the same formulas of the A-Normal
Approach for the VaR and ES.

It requires to build a weighted Covariance Matrix ¥ = (Gij) of the returns
according to the following definition

. 1-A 1
gjj = 1_)\/\/’ ZAm Rm— mIRM m,j
and replace ¥ with .
Remark
The EWMA model is similar to GARCH: we can estimate the variance by
using a regressive method

or 1 = oz + (1 — \RZ, oo fixed

where Ry denotes the Profit and Loss of our Portfolio at time k.
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Introduction

Historical Simulation

Historical simulation is a widely used method because
@ we do not have to specify any probability model;
@ we do not have to estimate any parameter.

We create the order statistics of PL (from the lowest to the highest)

PLs = (PL(y, .- -, PL(n)) and we assume that the theoretical distribution
is exactly the empirical one.

Under this Hypothesis it is very simple to compute the VaR,,. Denoting by
B = [a - N] (the integer part of o - N), we have

VaR, = PlLsg

Remark

The Historical Simulation Method has a high variance estimator.
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Introduction

Distribution of Daily Returns
NASDAQ 100 - Ticker: QQQ

250 4

== QQQ Actual Daily Returns

—— A "Normal” Distribution

200 +

Instead of actual
returns, here we
look at the
"worst" 5% (or
worst 1%) of the
narmal curve

150

100

Frequency (out of 1,387 actual returns)
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Weighted Historical Simulation

We fix some decreasing weights p,, with 1 < m < N, meaning that
€(0,1), >, pm =1 and pmi1 < pm. For example

1—-A

AL X e (0,1)

and we sort the weight p,, in accordance with the new position of the
element PLy, in PLs, we create a vector psorr = (P(1); - - - P(n)) and finally
the vector PLw = (p(l) . PL(I), s PN PL(N))

For a fixed & we determine m* as follows

m*+1

ZPLW, <a< Z PLw;

we set VaR, = PLwp,=.
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Our Portfolio

We created a panel including 38 assets, of different nature and came from
different geographical areas.

We downloaded the time series from Yahoo!Finance. The observed window
data starts from 6/9/2014 up to 6/9/2016.

Here the panel composition:
@ index: NYA, DAX, IPSA, etc...
@ equities: Apple, Ford, Bank of America, ENI, Telecom, etc...

. _ . . L 1
We construct a portfolio w = (w1, ..., wag) by picking w; = 5.
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Value at Risk and Expected Shortfall

Cleaning and Matching of the data

When we compose a diversified portfolio including for instance index,
stocks, bonds, equities, founds and we merge the data in order to made up
the matrix of the prices, we can find missing values (NA). For example in
our case we have 624 NA over 20710 values.

We adopt the following criterium

@ As concern the data from 6/9/2014 to 6/8/2016 we split the
procedure into two cases
- If there are more than 15% of NA we erase the row;
- If there are less then 15% of NA we interpolate the missing data S; ;

Spi = TL I g07(0,1))

where o; is the variance of the returns of the asset /.

@ As concerns the period from 6/8/2016 to 6/9/2016 we always
interpolate the not available data.

The FRTB: from VaR to ES September 10, 2016 14 / 28



Portfolio Risk Computation

We create the matrix of the log-return R and we compute VaR and ES by
using the previous 4 methods with o = 0.01

A-Normal | EMWA (\ = 0.99) EMWA (\ = 0.94)
VaR | 3.59% 3.74% 2.47%
Historical | W-Historical (A = 0.99) | W-Historical (A = 0.94)
VaR | 4.27% 4.52% 3.19%
A-Normal | EMWA (X = 0.99) EMWA (X = 0.94)
ES | 4.12% 4.29% 2.83%
Historical | W-Historical (A = 0.99) | W-Historical (A = 0.94)
ES| 4.81% 5.10% 3.93%
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Value at Risk and Expected Shortfall

Histogram of returns
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Historical Vs W-Historical
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Perturbation of Weights in Portfolio

This analysis help us to understand which instruments are more/less risky.
We use the following notations

e w = (wg,ws,...,wy), and we start by picking uniform weights:
Wi = wp = ... = wy,

@ / - index of instrument,

@ r - factor change,

(W],...,W,'I’,...,WN)
(Wa,swir )

ow’:H
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Sensitivity Analysis

Perturbation analysis of VaR applied to a portfolio
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Figure: Perturbation Analysis
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Sensitivity Analysis

Wiener Process Approximation in the VaR Estimation over
Time Horizon h

e VaR(a, h)

@ h - time horizon (h = 1),

@ Wiener process approximation (Brownian motion),
o h#1— VaR(a, h) ~VaR(a,1)V/h,

o

Alternative: divide data into h long intervals and estimate VaR(«, h).
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Sensitivity Analysis

Investigation of the accuracy of the Wiener approximation

W Wiener approximation M
O Periodisation N
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The figure confirm the small deviations of empiric data from the square
root rule, then we can conclude that the price process of our Portfolio can
be modeled by a Geometric Brownian Motion.
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Backtesting of VaR

In order to use a quantitative method for the risk measurement, the banks
must satisfy some backtesting requirements, that means the model must
show to be predictive when it is used in the day-by-day process.

Consider the event that the loss on a portfolio at time t + 1 exceeds its
reported VaR, VaR:(«a)

1 if Reys < VAR
It+1(a):{ tRen < VaRi(a) (0,0,1,0,...,0,1)

0 if Rt+1 > VaRt(a)

For being an accurate risk measure Christofferson(1998) stated two
properties for the hit sequence /;:

@ Unconditional Coverage Property

o Independence Property

This results in the assumption  /; ESi B().
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Back-Testing Procedures

Kupiec Test

The Kupiec test focuses on the unconditional property.

It concerns whether VaR is violated more than o x 100% of the time.
Using a sample of T observations we define

1

o= — It o
=3 k(@)
t=1
Null Hypothesis
Ho 0=«
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Back-Testing Procedures
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Back-Testing Procedures
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Figure: Expected Shortfall
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Towards the ES Back-Test

The discovery in 2011 that the ES is not elicitable as emphasized by
Gneiting "Marking and Evaluating Point Forecasts”, diffused the erroneous
belief that it could not be Back-Tested.

It is a fact that the absence of a convincing back-test has long been the
last obstacle for ES on its way to Basel. The migration from VaR to ES
was criticized.

Only in 2014 Acerbi and Szakely found three different tests to beck-test the
ES. We refer to their paper "Backtesting Expected Shortfall” for further
details.
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Towards the ES Back-Test

Acerbi-Szakely Statistics

M
1 1:R:
Z= . 11
where
@ 1; is the indicator function of the event {R; < VaR:}
° Nl = Zt ]-t

The estimator is itself a Random Variable and its distribution is unknown.
We perform the test by using a Monte Carlo approximation of the
distribution under the Hy hypothesis.
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Towards the ES Back-Test
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The Back-Testing shows good figures as the observed is strictly below of
the blue rejection level, but the key point is that we achieved an effective
ES backtestability.
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