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Linear Particle Accelerator (Linac)

New International Linear Collider (ILC) project (planning stage)

Structure design: two linacs throw particles toward each other at nearly the speed of light.
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Linear Particle Accelerator (Linac)

The accelerator is a sequence of several TESLA cavities.
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Linear Particle Accelerator (Linac)

The TESLA cavities are composed of 9 niobium cells.
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Particle acceleration in a TESLA Cavity

Electric field of the TM010 π-mode

Like a vibrating string the cavity can operate at different frequencies
and the field will have different shapes (modes)

By selecting the frequency one selects the operating mode

To achieve acceleration the fundamental Transverse Magnetic (TM)
mode is used
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Particle acceleration in a TESLA Cavity

Schematic of the acceleration of the beam

Synchronization between particle bunches and field is fundamental

Geometry is responsible for the operating frequency

⇒ Exact geometry representation is paramount
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Multiphysics model

Relevant phenomenon: Lorentz detuning
The electromagnetic field creates a pressure on the cavity wall
⇒ They are slightly (∼10nm) deformed ⇒ Shift of the frequency

Electromagnetic problem in ΩC

Linear elasticity problem in ΩW
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Electromagnetic problem

ΩC

ΩW

ΓC

ΓW

ΓW

ΓCW

ΓCW

ΓC

ΓW

ΓW

Γext

Γext

Maxwell’s eigenvalue problem
∇×

(
1
µ0
∇× E

)
= ω2ε0E in ΩC

E× nc = 0 on ΓCW(
1
µ0
∇× E

)
× nc = 0 on ΓC

electric field E→ eigenvector,
angular frequency ω → eigenvalue

metallic boundary conditions on ΓCW

→ zero tangential component

homogeneous Neumann boundary
conditions on ΓC

→ due to the symmetry

ε0 electric permittivity, µ0 magnetic permeability of vacuum
Our application: mode E0 with the smallest frequency ω0
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The second order time-harmonic Maxwell’s equation

The equation can be derived from the classical system of Maxwell’s equations:

ε
∂E
∂t
−∇×H + σE = 0 (Ampère-Maxwell theorem)

µ
∂H
∂t

+∇× E = 0 (Faraday’s law)

∇ · (εE) = ρ (Gauss’ theorem)
∇ · (µH) = 0 (Gauss’ theorem for magnetism)

assuming that the initial conditions already satisfy the two Gauss’ theorems
⇒ they are automatically satisfied for all time,

using the first two equations we obtain

∇×
(
1
µ
∇× E

)
+ ε

∂2E
∂t2

+ σ
∂E
∂t

= 0,

by assuming E(x, t) = Re(Ẽ(x)e iωt), σ = 0, ε = ε0, µ = µ0, we get

∇×
(

1
µ0
∇× Ẽ

)
− ω2ε0Ẽ = 0.
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Electromagnetic problem
Variational formulation

Dropping the ˜ symbol

∇×
(

1
µ0
∇× E

)
− ω2ε0E = 0

we multiply each term by a (vector) test function

v ∈ V = {v ∈ H(curl,ΩC ), v × n = 0 on ΓCW }

(H(curl,ΩC ) is the space of square integrable functions whose curl is also
square integrable)

we integrate using for the second term the integration by parts formula∫
ΩC

(∇× u) · v dx =

∫
ΩC

(∇× v) · u dx −
∫

Γ

(u× n) · v dσ.

We obtain∫
ΩC

[( 1
µ
∇× E

)
· (∇× v)− ω2ε0E · v

]
dx −

∫
Γ

( 1
µ
∇× E× n

)
· v dσ = 0.
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Electromagnetic problem → elasticity problem

Radiation pressure on ΓCW produced by the electromagnetic field:

p = −1
4
ε0 (E0 · nc) · (E∗0 · nc) +

1
4
µ0 (H0 × nc) · (H∗0 × nc)

It depends on
the normal component of the electric field,
the tangential component of the magnetic field.

It is a time-constant value.
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Linear elasticity problem

ΩW

ΓC

ΓW

ΓW

ΓCW

ΓC

ΓW

ΓW

Γext

Γext

p

∇ ·
(
2η∇(S)u + λI∇ · u

)
= 0 in ΩW

u = 0 on ΓW(
2η∇(S)u + λI∇ · u

)
· nw = p · nw on ΓCW(

2η∇(S)u + λI∇ · u
)
· nw = 0 on Γext

u→ displacement of each point

η, λ→ Lamé parameters of the material

∇(S)u = 1
2 (∇u +∇uT ) symmetric

gradient
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Deformed cavity

undeformed
shape

deformed
shape

Ω
′
CΓC

Γ
′
CW

Γ
′
CW

ΓC

Compute the deformation

Ω
′
W = {x + u (x) , x ∈ ΓW }

Γ
′
CW = {x + u|ΓCW

(x), x ∈ ΓCW }

Solve again the Maxwell’s eigenvalue
problem but in the deformed cell Ω′C
Compute the shift of the frequency
(Lorentz detuning)
∆ω0 = |ω0 − ω′0|
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Numerical methods

Strategy
Geometry definition: Choose a representation of the domain
Galerkin approach: Choose a discrete representation of the functional
spaces where we look for our unknowns (standard example: Finite
elements)

In particular:
Take into account the physical properties of the fields (example:
tangential continuity of E )
Γ
′
CW = {x + u|ΓCW

(x), x ∈ ΓCW } elasticity problem: structural
problem, the unknown u is the displacement of the geometry
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Isogeometric analysis (IGA)

The deformed domain is obtained by adding the displacement to the original
domain Ω

′
W = ΩW + u

Approximated geometry + Finite elements
CAD exact geometry + Finite elements + interpolation
CAD exact geometry + NURBS (IGA)

FEM geometry CAD geometry
Idea: use the CAD basis functions (B-Splines, NURBS) not only for the
geometry but also for the discretization space!
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Isogeometric analysis (IGA)
B-splines

Given a non-uniform knot vector {ξ1, ..., ξn+p+1}, in the parametric domain, B-spline basis
functions are:

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ).
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Isogeometric analysis (IGA)
B-splines

Bi ,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi ,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ).

0 1 2 3 4 5
0

1
B
1,2

� 0 1 2 3 4 5
0

1
B
2,2

� 0 1 2 3 4 5
0

1
B
3,2

�

The support of Bi ,p is (ξi , ξi+p+1)

The functions Bi ,p are non-negative and enjoy the partition–of–unity
property
The derivative of a B-spline is still a B-spline
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Isogeometric analysis (IGA)
NURBS - Non-Uniform Rational B-splines

A NURBS curve in R2 is the projection of a B-spline in R3

C (ξ) =
n∑

i=1

Ci
wiBi ,p(ξ)∑n
î=1 wîBî ,p(ξ)

=
n∑

i=1

CiNi ,p(ξ)
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Isogeometric analysis (IGA)
TESLA geometry definition - computed via the NURBS package

To construct the TESLA cavity
geometry: NURBS toolbox.

It is a collection of routines for
Octave and Matlab for the
creation and manipulation of
NURBS, developed by M. Spink
in 2000.

From 2009, extended and
maintained by Carlo de Falco
and Rafael Vázquez.
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Isogeometric analysis (IGA)
The Electric field - computed via the GeoPDEs package

To solve the equations: GeoPDEs
Free package for Octave and Matlab for solving PDEs using the IGA.

Originally (2009) developed in Pavia, by C. de Falco, A. Reali, and R. Vázquez.

We employed this package to reproduce some of the results obtained by J. Corno.

The field lines for the electric (left) and magnetic (right) field.
The solutions have been rescaled so that the total energy is 1J.
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Isogeometric analysis (IGA)
The deformation

Deformation of the cavity walls (rescaling factor 2·105).
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Summary

structure and physics of a Linear Collider,
TESLA cavity and the multiphysics problem,
mathematical formulation through a coupled electromagnetic and
elastic problem

Maxwell’s equations → double curl time-harmonic PDE for (E0, ω0)
elasticity deformation due to radiation pressure → displacement u

Lorentz detuning
initial cavity → corresponding ω0
radiation pressure → elastic deformation of the walls
new deformed cavity → new ω′

0
detuning effect |ω0 − ω′

0|
isogeometric analysis: same framework used for both geometry and
numerical analysis,
GeoPDEs and NURBS Octave packages allow an easy implementation.
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Outlook

First step:
solve the eigenvalue problem in the initial cavity −→ (E0, ω0) −→
extract Eb = E|ΓC

→ use that as BC to excite the mode ω0

Second step:
1 set Ω0

C = ΩC

2 find E ∈ V 0 = {v ∈ H(curl,Ω0
C ), v × n = 0 on ΓCW } s.t.∫

Ω0
C

(
1
µ0
∇× (E + E0

b)

)
· (∇× v) dx − ω2

0ε0

∫
Ω0

C

(E + E0
b) · v dx = 0

for all v ∈ V 0, with E0
b an extension of the boundary condition over Ω0

C

3 determine the deformed cavity Ω1
C (note that ΓC won’t move because

u = 0 on ΓC anyway)
4 repeat from 2 with the new cavity using the same ω0

Bonafini, Bonazzoli, Gaburro, Venturini Particle accelerator cavities 10/09/2016



Outlook

sequence of domains Ω0
C , Ω1

C , Ω2
C , Ω3

C . . .

natural question: does this sequence converge?
if yes, what about Ωinf? What about the resulting field Einf? is this
convergence fast?

Thank you for your attention!
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