

SIMULATION OF THE DRUG DELIVERY TO THE POSTERIOR SEGMENT OF THE EYE

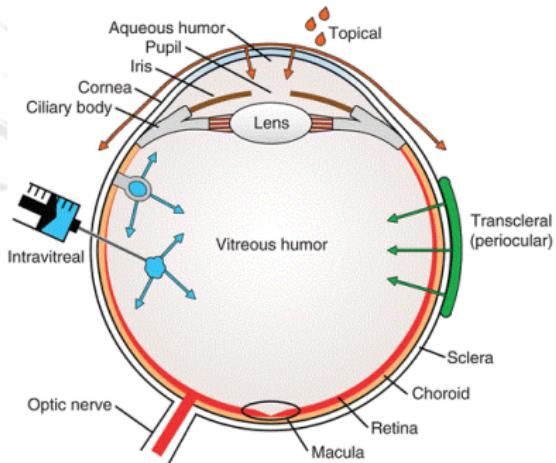
Chiara Piazzola, Christian Muench,
Martina Prugger, Sanja Ružićić,

INSTRUCTOR: Prof. Paola Causin

University of Innsbruck, TU Munich
University of Innsbruck, University of Novi Sad
University of Milano

September 10, 2016

Anatomy of the eye and drug delivery techniques



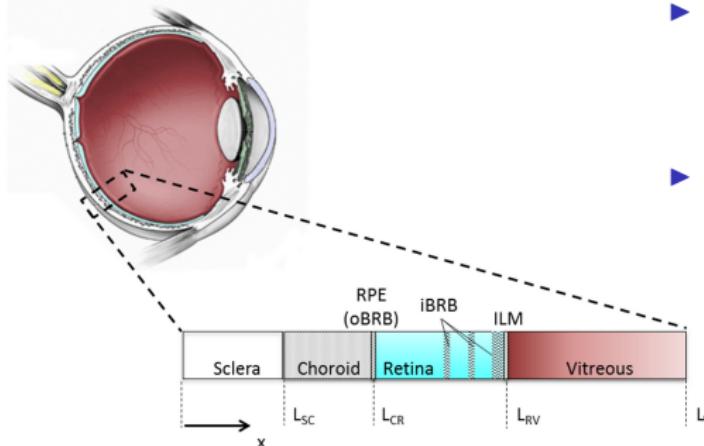
DISEASES affecting the posterior segment of the eye

- ▶ age related macular degeneration (AMD) and
- ▶ diabetic retinopathy

are the main **CAUSES OF BLINDNESS** in developed countries.

Copyright Informa 2014:
doi/abs/10.1517/17425247.2014.935338

The Structure of the Eye – PSE



- ▶ **SCLERA (S)** – the white part of the eye, relatively permeable to molecules.
- ▶ **CHOROID (C)** – a dense network of large and small blood vessels with a relatively sparse population of cells.

- ▶ **RETINA (R)** – a layer tissue containing neural cells.
- ▶ **VITREOUS (V)** – clear, jelly-like substance that fills the middle of the eye.

Therapeutic Treatments

POSSIBLE THERAPEUTIC TREATMENTS

- ▶ topical ocular eye drops

PROBLEM: *Most of the drug is cleared by tears and therapeutic levels near the retina may not be reached!*

- ▶ high drug doses given intravenously or by intravitreal administration (intravitreal injections).
- ▶ drugs release from an implant in the vitreous.

GOAL

- ▶ maximize the therapeutic benefits
- ▶ minimize potential adverse effects such as possible tissue damage caused by excessively high concentration of drugs

Barriers in the drug delivery

- ▶ **STATIC BARRIERS** such as physical obstacles to drug diffusion such as the sclera itself, the retinal pigment epithelium and the retinal vessels.
- ▶ **DYNAMIC BARRIERS** include drug clearance mechanisms through blood and lymphatic vessels and degradation processes.
 - ▶ Drug solubility,
 - ▶ charge,
 - ▶ degree of ionization,
 - ▶ molecular size and shape
 - ▶ ...

affect the penetration rate of the drug across the various barriers.

Mathematical model of the drug release to the posterior segment of the eye

Model of PSE

$$\frac{\partial C_j}{\partial t} - D_j \frac{\partial^2 C_j}{\partial z^2} + \beta_j \frac{\partial C_j}{\partial z} = Q(C_j), \quad j = S, C, R, V$$

$C_j = C_j(t, x) [g/cm^3]$... the drug concentration in layer j ,

$D_j \equiv D [cm^2/s]$... drug diffusivity rate,

$\beta [cm/s]$... advection parameter,

$$Q(C_j) = \begin{cases} -k_j C_j, & k > 0 \\ \bar{Q} = \text{constant} & \end{cases} \quad \dots \text{reaction term}$$

Spatial discretization: finite elements

EXAMPLE:

$$\begin{aligned}u''(x) &= f(x) \text{ in } (0, 1), \\u(0) &= 0, \\u(1) &= 0.\end{aligned}$$

WEAK FORMULATION:

$$\begin{aligned}\int_0^1 u''(x)v(x)dx &= u'(x)v(x)|_0^1 - \int_0^1 u'(x)v'(x)dx \\&= -\phi(u, v).\end{aligned}$$

Spatial discretization: finite elements

We divide the interval $(0, 1)$ such that

$$0 = x_0 < x_1 < \dots < x_n < x_{n+1} = 1$$

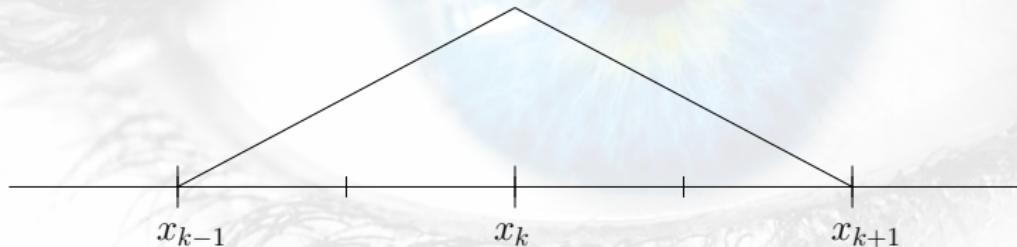


Figure: Possible form of test function v

$$u(x) \approx \sum_{k=1}^n u_k v_k(x), \quad f(x) \approx \sum_{k=1}^n f_k v_k(x)$$

Using

$$\phi(v_i, v_j) = \int_0^1 v'_i v'_j dx,$$

the approximated equation becomes

$$-\sum_{k=1}^n u_k \phi(v_k, v_j) = \sum_{k=1}^n f_k \int v_k v_j.$$

This can be written in the **matrix form**

$$-Lu = Mf$$

where

$$\mathbf{u} = (u_1, \dots, u_n)' \text{ and } \mathbf{f} = (f_1, \dots, f_n)'$$

$$L_{ij} = \phi(v_i, v_j), \quad M_{ij} = \int v_i v_j$$

Time discretization: Theta method

EXAMPLE:

$$\begin{aligned}\mathbf{y}' &= \mathbf{f}(t, \mathbf{y}) \\ \mathbf{y}(0) &= 0,\end{aligned}$$

where \mathbf{y} and \mathbf{f} are vectors depending on time $t \geq 0$.

To approximate the solution at the next time level $t_{n+1} = t_n + \Delta t$, we use a method of the form

$$y_{n+1} = y_n + \Delta t[\theta f(t_n, y_n) - (1 - \theta)f(t_{n+1}, y_{n+1})],$$

where $n = 0, 1, \dots$ and $\theta \in [0, 1]$.

Implement the Neumann Boundary Condition

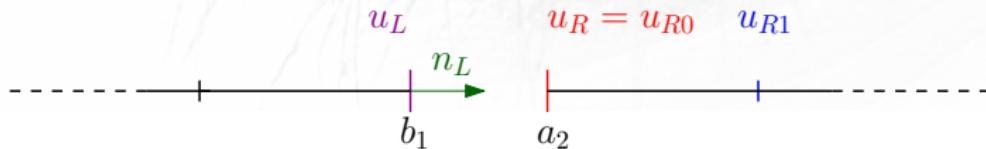
CONTINUITY OF FLUXES

$$\frac{\partial u_L}{\partial n_L} = \frac{\partial u_R}{\partial n_L},$$

Approximation by

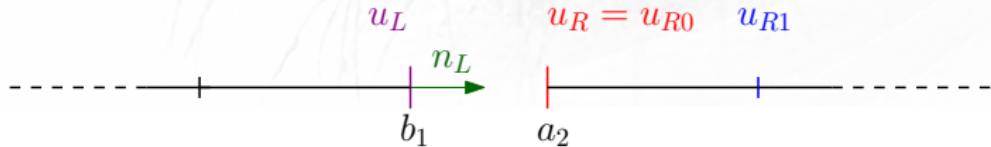
$$\frac{\partial u_R}{\partial n_L} \approx \frac{u_{R1} - u_{R0}}{\Delta x},$$

where $\Delta x = \frac{b_2 - a_2}{N_2}$.



Algorithm

1. set a tolerance $TOL = 10^{-4}$
2. use u_{R0}^0 and u_{R1}^0 from initial condition and compute derivative
3. set $u_{R0}^k = u_{R0}^0$, $u_{R1}^k = u_{R1}^0$ and $k = 0$
4. set $u^{k+1} = pu^0 + (1 - p)u^k$, with $p \in (0, 1)$,
5. compute difference $diff = \|u^{k+1} - u^k\|_\infty$
6. if $diff < TOL$, accept result
7. else, set $u_{R0}^k = u_{R0}^{k+1}$, $u_{R1}^k = u_{R1}^{k+1}$ and $k = k + 1$ and go to 4.



Mathematical model of the drug release to the posterior segment of the eye

Model of PSE

$$\frac{\partial C_j}{\partial t} - D_j \frac{\partial^2 C_j}{\partial z^2} + \beta_j \frac{\partial C_j}{\partial z} = Q(C_j), \quad j = S, C, R, V$$

$C_j = C_j(t, x)[g/cm^3]$... the drug concentration in layer j ,

$D_j \equiv D [cm^2/s]$... drug diffusivity rate,

$\beta [cm/s]$... advection parameter,

$$Q(C_j) = \begin{cases} -k_j C_j, & k > 0 \\ \bar{Q} = \text{constant} & \end{cases} \quad \dots \text{reaction term}$$

Sclera

$$\frac{\partial C_S}{\partial t} - D_S \frac{\partial^2 C_S}{\partial z^2} = -\kappa_S C_S,$$

κ_S ... decay coefficient

BOUNDARY AND INTERFACE CONDITIONS

Dirichlet: $C_S = c(t)$

Neumann condition – Continuity of fluxes

$$D_S \frac{\partial C_S}{\partial z} \cdot n_S = D_C \frac{\partial C_C}{\partial z} \cdot n_S$$

Choroid

$$\frac{\partial C_C}{\partial t} - D_C \frac{\partial^2 C_C}{\partial z^2} = -\kappa_C C_C,$$

κ_C ... decay coefficient

INTERFACE CONDITIONS:

Robin condition – Permeability law

$$-D_C \frac{\partial C_C}{\partial z} \cdot n_C = L_p(C_C - C_S)$$

L_p [cm/s] ... membrane permeability coefficient

Neumann condition – Continuity of fluxes

$$D_C \frac{\partial C_C}{\partial z} \cdot n_C = D_R \frac{\partial C_R}{\partial z} \cdot n_C$$

Retina

$$\frac{\partial C_R}{\partial t} - D_R \frac{\partial^2 C_R}{\partial z^2} + \beta_R \frac{\partial C_R}{\partial z} = -\kappa_R C_R,$$

κ_R ... decay coefficient

β_R ... pumping velocity

INTERFACE CONDITIONS:

Robin condition – Permeability law

$$-D_R \frac{C_R}{\partial z} \cdot n_R = L_p(C_R - C_C)$$

Neumann condition – Continuity of fluxes

$$D_R \frac{\partial C_R}{\partial z} \cdot n_R = D_V \frac{\partial C_V}{\partial z} \cdot n_R$$

Vitreous

$$\frac{\partial C_V}{\partial t} - D_V \frac{\partial^2 C_V}{\partial z^2} = -\kappa_V C_V,$$

κ_V ... decay coefficient

INTERFACE AND BOUNDARY CONDITIONS:

Robin condition – Permeability law

$$-D_V \frac{C_V}{\partial z} \cdot n_v = L_p(C_V - C_R)$$

Neumann condition

$$\frac{\partial C_V}{\partial z} = 0$$

Table of parameters

DESCRIPTION	PAR.	UNIT	VALUE
SCLERA THICKNESS	l_S	μm	600
CHOROID THICKNESS	l_C	μm	300
RETINA THICKNESS	l_R	μm	246
VITREOUS THICKNESS	l_V	μm	15000
Drug DIFFUSIVITY coefficient	D	cm^2/s	10^{-6}
PERMEABILITY coefficient	L_p	cm/s	10^{-5}
ADVECTION coefficient	β_R	cm/s	$-2.44 \cdot 10^{-5}$
DECAY coefficient in sclera	k_S	$1/s$	$3 \cdot 10^{-4}$
DECAY coefficient in choroid	k_C	$1/s$	$3 \cdot 10^{-4}$
DECAY coefficient in retina	k_R	$1/s$	$3 \cdot 10^{-4}$
DECAY coefficient in vitreous	k_C	$1/s$	$8 \cdot 10^{-5}$

- ▶ We focused on the one dimensional problem;
- ▶ At the sclera external boundary we impose a concentration exponentially decreasing in time fitting the trend obtained from a model of drug release in posterior eye gel implants (see [1]);
- ▶ Initial concentration is zero on all the domains;
- ▶ The problem is convection dominated.

- Michail E. Kavousanakis, Nikolaos G. Kalogeropoulos, and Dimitrios T. Hatzivramidis. *Computational modeling of drug delivery to the posterior eye*. Chemical Engineering Science 108 (2014): 203-212.
- Causin P., Malgaroli F. *Mathematical assessment of drug build-up in the posterior eye following transscleral delivery*. submitted to Journal of Mathematics in Industry, (2016).